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Abstract
The classical thermopower formulae generally applied for the calculation of the Seebeck
coefficient S are argued to be incomplete. S can be separated into two different contributions, a
scattering term, S0, and a thermodynamic term, �S, representing the additional change of the
electrochemical potential μ with temperature T caused by ‘non-scattering’ effects, for instance,
the band edge shift with T . On the basis of this separation into S0 and �S, it is shown that
shifts of the band edges with T lead to an additional contribution to the classical thermopower
formulae. This separation provides the basis for an interpretation of positive thermopowers
measured for many metals. Positive thermopower is expected if the energy of the conduction
band edge increases with T and if this effect overcompensates for the influence of the energy
dependent conductivity, σ(E). Using experimental thermopower data, the band edge shifts are
determined for a series of liquid normal metals.

1. Introduction

The thermopower is a transport coefficient which can provide
essential insight into the electronic structure of a material
as well as information about which electronic scattering
mechanisms are active. Unfortunately, it is often very
difficult to interpret the experimental thermopower data even
for the simplest metals. Even for such simple one-electron
metals as Cu, Ag, Au, and Li the theory of nearly free
electrons (NFE approximation) predicts a negative sign of the
thermopower, while experimentally one finds a positive sign
both in the solid state [3, 4] and in the liquid state [5–7].
This finding is unexpected, especially for the liquid state
insofar as by melting of a metal the periodicity of long-
range order of the atomic arrangement is lost, and therefore,
the transport coefficients can be expected to approach a free-
electron behavior. This expectation is supported by the fact
that the experimentally determined Hall coefficients, Rexp, are
equal to the values predicted by the NFE approximation [8, 9],
R0 = −1/(|e|n), where n is the electron density and |e| is
the elementary charge. Such a discrepancy is also found in
other (liquid) metals as demonstrated in table 1. Except for
the rightmost column, this table is a collection of data taken
from Busch and Güntherodt [1] (table 1 and table 4 therein)
and Künzi and Güntherodt [2] (table 2 therein): while the

experimentally determined Hall coefficients, Rexp, of almost
all liquid normal metals1 are equal to R0, the experimentally
determined thermopowers, Sexp, generally differ from the
theoretical ones calculated in the framework of the NFE
approximation [3, 4, 10],

α0 = −π2k2
BT

3|e|EF
. (1)

kB is the Boltzmann constant, EF the Fermi energy and T the
temperature.

Following [1], the deviation of the experimental
thermopower data from the theoretical one calculated by using
equation (1) is expressed by the thermoelectric parameter,

Xexp = Sexp

α0
. (2)

A widespread description of the thermopower in
disordered metals is the Ziman theory [11] in connection with
the Mott formula,

α = α0 EF

[
1

σ

∂σ(E)

∂ E

]
EF

, (3)

1 ‘Normal metals’ or ‘sp metals’; the term ‘normal metals’ is used in honor
of G Busch and H-J Güntherodt who used this term in their pioneer work on
liquid metals and alloys.
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Table 1. Experimental thermopowers, Sexp, and Hall coefficients, Rexp, compared with calculated NFE values, α0 and R0, respectively, taken
from [1, 2]. (Sexp was measured at the melting temperature Tm, Rexp at Tm and higher.) The band edge shifts, dEC/dT , are calculated by using
equation (41) with r = 0 and z = 3/2.

Metal Z
Sexp

(μV K−1)
Sexp/α0

(=Xexp) Rexp/R0

dEC/dT
(10−6 eV K−1)

Cu 1 17.7 −3.4 1.00 25.5
Ag 1 11.0 −1.8 1.02; 0.97 20.0
Au 1 5.6; 4.8 −0.9; −0.8 1.00 14.4

Li 1 21.7 −9.0 0.98 25.3
Na 1 −7.9 2.6 0.98; 1.00 −3.3
K 1 −14.0 3.3 1.00 −7.6
Rb 1 −6.3 1.4 1.00 0.5
Cs 1 6.4 −1.3 1.00 ± 0.03; 1.00 13.8

Mg 2 1.5
Zn 2 0.1 −0.1 1.00; 1.01 1.6
Cd 2 0.5 −0.2 0.96; 0.98; 1.04; 0.99 4.3
Hg 2 −3.5 4.1 0.98; 0.96; 1.22; 1.04; 0.99; 1.00;

1.20; 1.00; 1.00; 1.00; 1.07
−2.2

Al 3 −2.3; −2.1 1.1; 1.0 1.00 0.9
Ga 3 −0.4 0.6 0.96; 0.99; 0.97; 1.00;

1.04; 1.00; 1.02
0.6

In 3 −1.0 0.8 0.98; 0.80; 1.04; 0.93;
0.95; 1.00; 0.94; 0.92

0.9

Tl 3 −0.5 0.3 0.76 2.0

Ge 4 0 0 1.00
Sn 4 −0.5 0.4 0.98; 1.07; 1.00; 1.00;

1.00; 1.00; 1.00
1.4

Pb 4 −3.4 2.1 0.38; 0.88; 0.73; 0.88 −1.0

Sb 5 0 0 1.14; 1.07
Bi 5 −0.7 0.6 0.95; 0.60; 0.69; 0.68; 0.96

where σ(E) is the energy dependent conductivity. According
to equation (3) the key to the sign of the thermopower
apparently is the energy derivative of σ(E). In general,
σ(E) is expected to increase with increasing energy of the
electrons, so as a general rule negative thermopowers are
to be expected ([4], p 63), because α0 < 0, equation (1).
On the other hand, if one can show that the more energetic
an electron is, the more it is scattered (i.e. σ(E) decreases
with increasing energy), then the positive sign of α can be
understood. Until the 1960s, such a situation was thought
to be unphysical. However, because positive thermopowers
do exist in Cu, Ag, Au, and Li, this thought was called into
question: by construction of special atomic model potentials
(pseudopotentials; [4], pp 195–196) and applying the extended
Ziman formula for the energy dependent specific electrical
resistivity ρ(E) (=1/σ(E)) and considering (experimental)
structure factors, it was possible to calculate σ(E) with the
property ∂σ(E)/∂ E < 0 at EF. The thermopowers calculated
from these ρ(E) correspond relatively well to the experimental
thermopowers of a series of metals [12–20], while calculations
by Geertsma et al [21] provided negative thermopowers for
liquid Li and Cs, in contrast to the positive sign measured. It
is clear that the calculated thermopowers depend essentially on
the choice made for the pseudopotential.

All the efforts spent on an interpretation of the positive
thermopowers of metals were concentrated on the energy
dependence of the scattering process of the electrons. In the

present paper we shall attract attention to another possible
cause for positive thermopowers of metals: the temperature
dependence of the band edge EC. The classical thermopower
formula for homogeneous metals is [3, 4, 10, 22]

S = π2k2
BT (1 + r)

3eEF
, (4)

where e = −|e| and +|e| for electron and hole conductivity,
respectively. r characterizes the scattering mechanism and
represents the energy dependence of the mean free path L
according to L ∝ Er .

In the present paper it will be argued that equation (4) is
to be extended by an additional term, 1

|e|
dEC
dT .

In section 2.1 it will be shown that the classical
thermopower formula, equation (4), leads to contradictions
if formally applied to the phases of a composite (alloy with
phase separation). As a possible cause for these contradictions,
in section 2.2 the neglect of scattering independent effects
on the electrochemical potential μ will be identified. These
scattering independent contributions to S will be taken into
account by an additional term �S = 1

|e|
dμ

dT proposed in
section 3.1. By application of this modified thermopower
formula to composites, in section 3.2 it will be shown
that the basic problem (pointed out in section 2.1) can be
solved. In section 3.3 an analytical expression for dμ/dT in
composites will be derived, where the influence of the band
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edges is included. In section 4 the thermopower formula for
homogeneous metals will be derived as limiting cases of a
two-phase composite, and it will be applied for a calculation
of band edge shifts in liquid normal metals. The results of
sections 3 and 4 will be discussed in section 5 and summarized
in section 6. In the appendix the effect of the electrostatic
potential on the thermopower in a-Cr1−xSix alloys will be
discussed.

2. The problem: incompleteness of equation (4)

2.1. Breakdown of equation (4)

In the following we shall show that the thermopower formula
equation (4) is incomplete, because it leads to contradictions
if applied to the phases of a composite. The thermopower
formula for composites is [23]

∑
i

υi
κi/Si − κ/S

κi/Si + 2κ/S
= 0. (5)

S and κ are the Seebeck coefficient and specific thermal
conductivity of the composite, κi , Si , and υi are the
corresponding parameters and the volume fraction of the
phase i (A, B, . . .). S versus υi can be calculated by using
equation (5) if Si , κi and κ are known. Si and κi are to
be calculated with the same formulae as for homogeneous
materials, which for metallic phases are

Si = π2k2
BT (1 + ri )

3ei EF,i
, (6)

κi ≈ κe,i = 16π3

9

mi Li EF,i

h3
k2

BT, (7)

where h is Planck’s constant. EF,i is the Fermi energy in
the phase i . ei = −|e| and +|e| for electrons and holes,
respectively. κ is to be calculated by using [24]

∑
i

υi
κi − κ

κi + 2κ
= 0. (8)

Equation (6) corresponds to equation (4) applied for the
phase i . Analogously to the homogeneous materials case, ri

characterizes the energy dependence of the mean free path Li

in the phase i according to Li ∝ Eri . The approximation
in equation (7) is certainly a good one for metallic phases if
the carrier densities are not too small and if the phases form
macroscopic clusters ([23], section 5.2. therein).

Let us consider a two-phase composite where the phase
A has electron conductivity with n as the electron density,
whereas the phase B has hole conductivity with the hole
density p (characterized by figure 1(c) in [25]). Equation (5)
has two solutions, S(+) and S(−):

S = S(±) = 4κ

� ± √�2 + 8(κA/SA)(κB/SB)
(9)

with � = (3υA − 1)κA/SA + (3υB − 1)κB/SB and υA +
υB = 1. If the scattering properties and the carrier densities

Figure 1. S(−) (bold line) and S(+) (fine line) versus υB calculated
by using equation (9) with κA = 8.5, κB = 12.7, SA = −13.0, and
SB = +1.7 (in units of mW cm−1 K−1 and μV K−1, respectively).
For υB = 0.11 . . . 0.61, equation (9) has no real solutions.

in the phases do not change with the composition, the Si ,
equation (6), and κi , equation (7), are constant for a given
temperature T . However, for constant Si and κi , one can easily
show that equation (9) never has real solutions for the entire
concentration range if the SA and SB have different sign, no
matter which fixed numbers are chosen for the Si and κi . This
result is dubious, because equation (5) in fact holds generally,
when for the phases i their own transport coefficients, Si and
κi , are inserted, independently of the signs of the carriers in the
different phases of the composite ([23], section 5.1. therein).
In figure 1 an example calculation is shown for a hypothetical
composite with SA = −13.0 μV K−1, SB = +1.7 μV K−1,
κA = 8.5 mW cm−1 K−1, and κB = 12.7 mW cm−1 K−1.2

As can be seen in figure 1, for υB = 0.11 . . . 0.61,
equation (9) does not have real solutions, because the square
root in equation (9) becomes imaginary. The situation is not
essentially changed if the changes of n and p due to electron
transfer between the phases maintaining μA = μB = μ are
taken into account by equations (6), (7) and

EF,A = h2

8mA

( 3

π

)2/3
n2/3, (10)

EF,B = h2

8mB

( 3

π

)2/3
p2/3, (11)

2 Si and κi correspond to n = 1022 cm−3 and p = 2×1022 cm−3 if calculated
by using equations (6), (7), (10), (11) with mA = m0, mB = 0.2 × m0, ri = 2,
and Li = 4/π × di , where di are the interatomic distances in the phases,
dA = 0.25 nm and dB = 0.234 nm. m0 is the electron mass.
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because this electron transfer (expressed by dn/dT , equa-
tion (26)) is relatively small, so the changes of Si and κi are
only marginal. μA and μB are the electrochemical potentials
in phase A and phase B , respectively.

In conclusion of this section we state: the problem that
for eA = −eB, equation (9) (or equation (5)) does not have
real solutions over the entire concentration range is a basic
problem. This finding suggests that the theoretical formulae
equations (4) and (5) are not compatible with each other,
that is, either equation (4) is incomplete or equation (5) is
incomplete. With the argumentation given in [23] (sections 1
and 5.1 therein) we believe that equation (5) is actually correct;
the same formula, equation (5), would also be obtained if the
energy-flux density JE was applied for the derivation (instead
of the entropy-flux density JS as is done in [23]). Because
these two flux densities, JS and JE , are of fundamental
importance for the electronic transport in homogeneous and
heterogeneous materials ([10], p 28 therein), we suppose that
the incompatibility of equations (4) and (5) is caused by
equation (4).

2.2. Cause for the breakdown of equation (4)

Equation (4) reflects the incomplete equalization of the
electrochemical potential μ at the ends of a sample if they
have different temperatures, T1 and T2. This equalization is
incomplete, because a balance is realized between acceleration
and scattering of the electronic carriers: acceleration in an
electric field (due to potential differences) counterbalanced by
deceleration due to scattering (at phonons and structure faults).
In consequence of this counterbalance there remains a residual
difference in μ, �μ. This �μ divided by the temperature
difference �T = T2−T1 is what is measured in a measurement
of the Seebeck coefficient Sexp, i.e.,

Sexp = 1

|e|
�μ

�T
, (12)

in correspondence with the definition of the (differential)
Seebeck coefficient [4, 10],

S =
[

grad μ

|e|grad T

]
J=0

, (13)

which for homogeneous materials reduces to ([10], p 47)

S =
[

1

|e|
dμ

dT

]
J=0

. (14)

Only in superconductors does the residual difference in μ

disappear, �μ = 0, because scattering does not happen, i.e.,
the effect of deceleration by scattering disappears completely.
That is why S = 0 for superconductors, in spite of the
displacement of the electrical charges.

Now let us consider a simple one-band metal, where the
band edge EC depends on temperature, i.e., dEC/dT �= 0. The
Boltzmann transport equation (BTE) provides for the Seebeck
coefficient the formula equation (4) replacing equation (14) in
the NFE approximation. Aside from T , in equation (4) there
are only two variables, the Fermi energy EF and the scattering

parameter r , i.e., any influence of the amount of dEC/dT is not
contained therein. Because dEC/dT is generally very small,
it is reasonable to assume that both EF and r are practically
independent of the value of dEC/dT , i.e., equation (4) provides
the same value for S irrespective of the value of dEC/dT . This
result is suspect, because μ increases with EC according to

μ = EC + μ0
C − |e|ϕ, (15)

where ϕ and μ0
C are the electrostatic potential and the chemical

potential, respectively. While the deceleration effect due to
scattering is not changed, the acceleration effect due to the
potential difference increases with increasing difference of
the electrochemical potential between the ends of the sample.
Therefore, the total residual difference �μ between the ends
of the sample is also expected to be larger if dEC/dT > 0
compared with dEC/dT = 0. This can be expressed by

�μ = (�μ)0 + δ (�μ) , (16)

where (�μ)0 represents the residual difference in μ for
dEC/dT = 0; δ(�μ) represents the additional contribution
to �μ if dEC/dT > 0 (or dEC/dT < 0). Thus, different
values for S are expected for dEC/dT = 0 compared with
dEC/dT �= 0. This exception is, however, not reflected by
equation (4). This argumentation holds, in principle, also for
the more general BTE formula,

S = K2/K1 − μ0
C

eT
, (17)

where the Ks are the transport integrals. Also in this formula,
S only depends on μ0

C and the scattering properties of the
carriers, and not on dEC/dT .

3. The proposal for a solution of the problem

3.1. The extension of the thermopower formula

The dilemma described in the previous sections can be solved
by the introduction of an additional term taking into account
additional influences on the residual difference of μ. One
example of such an influence is the band edge shift, dEC/dT �=
0, considered in section 2.2, already. Another example is the
change of the carrier densities in the phases of a composite
(considered in section 3.3) or due to interband transfer of
electrons in (homogeneous) transition metals if the band edge
shifts of the s and d bands are different. We define, in
correspondence with equation (16) and in analogy with the
relation between equation (12) and equation (14), the extended
thermopower formula

S′ = S0 + �S, (18)

already introduced in [23] (equation (17) therein) for the
(homogeneous) phases i in a composite. S0 and �S correspond
to (�μ)0 and δ(�μ), respectively, in equation (16).
Considering the different origins of S0 and �S, we denote
them as the scattering term,

S0 =
[

1

|e|
dμ

dT

]scatt

J=0

, (19)

4
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and the thermodynamic term,

�S =
[

1

|e|
dμ

dT

]thermodyn

J=0

≡ 1

|e|
dμ

dT
, (20)

respectively. S0, equation (19), corresponds with equation (4)
(for the case of NFE-approximation) and with equation (17)
(for the more general case). �S, equation (20), representing
the non-scattering influences, is to be determined separately;
this will be the subject of the following considerations.

3.2. Application of the extended thermopower formula,
equation (18), to composites

Now we shall show that the basic problem described in
section 2.1 can be solved by the extended thermopower
formula, equation (18), i.e., Si , equation (6), is replaced by
S′

i defined by

S′
i = S0

i + 1

|e|
dμ

dT
(21)

with

S0
i = π2k2

BT (1 + ri )

3ei EF,i
, (22)

and equations (5) and (9) are replaced by

∑
i

υi
κi/S′

i − κ/S′

κi/S′
i + 2κ/S′ = 0 (23)

and

S′ = S′(±) = 4κ

�′ ± √�′2 + 8(κA/S′
A)(κB/S′

B)
, (24)

where �′ = (3υA − 1)κA/S′
A + (3υB − 1)κB/S′

B.
Equation (24) has solutions for the entire concentration

range 0 � υB � 1, as shown in figure 2. For the calculation
of dμ/dT , equations (39), (61) of [25] are applied, where the
contributions of the electrostatic potential to dμ/dT were still
neglected, i.e., ∂ϕi/∂ni = 0 was set.

The result that equation (5) only has solutions in the
entire concentration range if the Si and S are replaced by
S′

i and S′, respectively, supports the fact that the extended
thermopower formula, equation (18), can be an adequate
description. Furthermore, this result suggests that in real
composites the thermopowers of the phases can generally not
be assumed to be independent of the concentration. In other
words, constant values for Si would not be consistent with the
rules of thermodynamics which was the basis for the derivation
of the thermopower formula, equation (5) ([23], sections 2.
and 5.1 therein).

3.3. The influence of the band edges on the Seebeck coefficient
of composites

Until now fixed band edges have been assumed. As is known,
for many semiconductors, the energy gap, �E = EC − EV ,
depends on temperature T [3, 22, 26], where EC and EV

characterize the band edges of the conduction band (CB) and
valence band (VB), respectively, i.e., at least dEC/dT �= 0 or

Figure 2. S′(−) and S′(+) versus υB calculated by using
equation (24) for T = 300 K, where the term dμ/dT is calculated
from the condition dμA/dT = dμB/dT with
∂EC,A/∂T = ∂EV,B/∂T = ∂ϕi/∂ni = 0. Equation (24) has real
solutions for the entire concentration range. In the inset the Seebeck
coefficients of the phases i calculated by using equation (21) are
drawn versus υB.

dEV /dT �= 0. Analogously, also for metals the band edge
can depend on T which influences the term dμ/dT , and via
equation (21) also the Seebeck coefficient. In a (metallic)
composite, dμ/dT can be expressed by

dμ

dT
= dμi

dT
= ∂μi

∂T
+ ∂μi

∂n

dn

dT
, (25)

which for a two-phase composite leads to

dn

dT
= −

∂μA

∂T − ∂μB

∂T
∂μA

∂n + υA
υB

∂μB

∂nB

, (26)

if the total number of electrons is assumed to be constant, i.e.,
υAdn + υBdnB = 0. For a metallic composite specified in
section 2.1, equation (26) leads to

dn

dT
= −

∂μ0
A

∂T + ∂μ0
B

∂T + ∂ EC,A

∂T − ∂ EV,B

∂T
∂μ0

A
∂n − |e| ∂ϕA

∂n + υA
υB

(
∂μ0

B
∂p − |e| ∂ϕB

∂nB

) , (27)

where dp = −dnB is used and

μA = EC,A + μ0
A − |e|ϕA, (28)

μB = EV,B − μ0
B − |e|ϕB. (29)

ϕi , μ0
i , and ni are the electrostatic potential, the chemical

potential, and the electron density, respectively, for the phase i

5
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Figure 3. Same as figure 2, but for ∂EC,A/∂T = −5, 0, 2, and 4
×10−6 eV K−1, while ∂EV,B/∂T = 0 and ∂ϕi/∂ni = 0. The
discontinuity in the curves shifts to lower υB as ∂EC,A/∂T increases.
For ∂EC,A/∂T > 0.28 × 10−6 eV K−1, equation (24) does not have
real solutions for the entire concentration range.

(nA ≡ n). EC,A and EV,B are the band edges of the CB and VB
for the phases A and B , respectively.

Inserting equations (27) and (28) in equation (25) leads to

dμ

dT
= ∂ EC,A

∂T
+ ∂μ0

A

∂T
−

∂μ0
A

∂T + ∂μ0
B

∂T + ∂ EC,A

∂T − ∂ EV,B

∂T

1 +
υA

(
∂μ0

B
∂p −|e| ∂ϕB

∂nB

)

υB

(
∂μ0

A
∂n −|e| ∂ϕA

∂n

)
. (30)

In equations (27) and (30), ∂ϕi/∂T = 0, ∂ EC,A/∂n = 0, and
∂ EV,B/∂p = 0 are assumed. The first assumption corresponds
to the fact that the electrostatic potential does not depend on T ;
the second and third ones are equivalent to the assumption that
EC,A and EV,B do not depend on the occupation of the CB and
VB.

Now, dμ/dT can be calculated by using equation (30) for
different band edge shifts, ∂ EC,A/∂T and ∂ EV,B/∂T , if

∂μ0
i

∂T
= −π2k2

BT

6EF,i
, (31)

∂μ0
A

∂n
= 2EF,A

3n
, (32)

∂μ0
B

∂p
= 2EF,B

3p
(33)

(following from the Fermi–Dirac statistics) are taken into
account. With this dμ/dT , S′

i and S′(±) can be calculated by
using equations (21) and (24), respectively.

Figure 4. Same as figure 2, but for ∂EV,B/∂T = −1.5, 0, and
2 × 10−6 eV K−1), while ∂EC,A/∂T = 0 and ∂ϕi/∂ni = 0. The
discontinuity in the curves shifts to lower υB as ∂EV,B/∂T increases.
For ∂EV,B/∂T > 1.9 × 10−6 eV K−1, equation (24) does not have
real solutions for the entire concentration range.

In figure 3 the effect of ∂ EC,A/∂T on the solution of
equation (24) is shown. For this variation both ∂ EV,B/∂T = 0
and ∂ϕi/∂ni = 0 were set. Equation (24) has solutions
for the entire concentration range as long as ∂ EC,A/∂T <

0.28 × 10−6 eV K−1. As long as this condition is fulfilled,
the discontinuities in the S′(−) and S′(+) curves are shifted to
lower υB as ∂ EC,A/∂T increases. Simultaneously, the amount
of the discontinuity (the distance between the upper and lower
kinks) decreases, until it disappears completely at a critical
value of υB and a gap occurs for the real solutions S′(±) if
∂ EC,A/∂T > 0.28 × 10−6 eV K−1.

A variation of ∂ EV,B/∂T has a similar influence. In
figure 4 the influence of ∂ EV,B/∂T on the solution of
equation (24) is shown, where ∂ EC,A/∂T = 0 and
∂ϕi/∂ni = 0 were set. Equation (24) has solutions for the
entire concentration range as long as ∂ EV,B/∂T < 1.9 ×
10−6 eV K−1.

The reason for the fact that for ∂ EC,A/∂T > 0.28 ×
10−6 eV K−1 (resp., ∂ EV,B/∂T > 1.9 × 10−6 eV K−1), there
are υB ranges where equation (24) does not have real solutions
is the neglect of the electrostatic potentials. Its effect on
the discontinuity acts contrarily to those of ∂ EC,A/∂T (resp.,
∂ EV,B/∂T ), i.e., taking into account the terms ∂ϕi/∂ni in
equation (30), the discontinuity in the S′(±) curves is expected
to be shifted into the direction of larger υB. (The phase B is
the one with the deeper average potential.) In the appendix the
effect of the electrostatic potential on the discontinuity will be
considered for a-Cr1−xSix alloys.
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4. The Seebeck coefficient for homogeneous metals

In the limit υB = 0, the composite degenerates to a
homogeneous alloy consisting exclusively of the phase A. On
the opposite side, for υB = 1 we get a homogeneous alloy
consisting exclusively of the phase B . For these two limiting
cases the formulae must hold as well. Setting υB = 0, it
follows from equation (30) that

dμ

dT
= ∂ EC,A

∂T
+ ∂μ0

A

∂T
, (34)

and taking into account equations (21), (22), (24) and
equation (8),

S′(+) = S′
A = π2k2

BT (1 + rA)

3eA EF,A
+ 1

|e|
(

∂ EC,A

∂T
+ ∂μ0

A

∂T

)
.

(35)
Analogously it follows for υB = 1 that

dμ

dT
= ∂ EV,B

∂T
− ∂μ0

B

∂T
, (36)

S′(+) = S′
B = π2k2

BT (1 + rB)

3eB EF,B
+ 1

|e|
(

∂ EV,B

∂T
− ∂μ0

B

∂T

)
.

(37)
Inserting equation (31) in equations (35), (37) we get

S′ = −π2k2
BT (z + r)

3|e|EF
+ 1

|e|
dEC

dT
, (38)

S′ = π2k2
BT (z + r)

3|e|EF
+ 1

|e|
dEV

dT
, (39)

with z = 3/2, where the index i is omitted and ∂ EC,A/∂T and
∂ EV,B/∂T are replaced by dEC/dT and dEV /dT , respectively,
because a homogeneous metal consists of only one phase. Each
of the two limiting cases, equations (38) and (39), represents
a homogeneous metal with electron conductivity and hole
conductivity, respectively, and constant carrier density, i.e.,
interband transfer of electrons (depending on the temperature),
is not considered.

The term ‘∂μ0
i /∂T ’ reflects the lowering of the chemical

potential with T described by the Fermi–Dirac statistics. In
equations (34)–(39) it is assumed that equation (22) (resp.,
equation (4)) exclusively represents the scattering part of S. It
is, however, not completely clear whether equation (22) (resp.,
equation (4)) indirectly contains this term ‘∂μ0

i /∂T ’ already. If
so, then in equations (35), (37)–(39) the term ‘∂μ0

i /∂T ’ (resp.,

‘−π2k2
BT

6EF,i
’) is to be deleted, and the value for z is to be replaced

by z = 1.
Inserting equation (1) into equation (38), it follows that

S′ = α0 (z + r) + 1

|e|
dEC

dT
. (40)

Equation (40) is to be compared with the experimental data,
Sexp, listed in table 1. dEC/dT can be calculated by using

dEC

dT
= |e|Sexp

(
1 − z + r

Xexp

)
(41)

following from equations (40) and (2), where S′ = Sexp is
set. In table 1, dEC/dT calculated by using equation (41)
for r = 0 and z = 3/2 are listed. For the liquid metals
r = 0 applies rather than r = 2 because at high temperatures
scattering due to acoustic phonons is the dominant scattering
mechanism [10, 22]. If z = 1 is set, then the numbers for
dEC/dT turn out to be smaller; the differences from z = 3/2
are, however, not very large. As can be seen in table 1, there
is a general tendency: the larger the valence, Z , the smaller
dEC/dT .

5. Discussion

For normal metals σ(E) can be written as

σ(E) = e2 4

3m
Eτ (E)N(E), (42)

following from the BTE for a spherical Fermi surface. N(E)

is the density of states, m the effective mass, and τ the
relaxation time of the carriers. Replacing τ (E) and N(E) by
the corresponding NFE formulae, σ(E) can be written as

σ(E) = C Er+1, (43)

where r characterizes the scattering properties according to
L ∝ Er , while C is an energy independent factor containing e,
h and m. Inserting equation (43) into equation (3), we get

α = −π2k2
BT (1 + r)

3|e|EF
. (44)

Equation (44) agrees with the first term in equation (38) if
z = 1 is set. It represents the influence of the energy dependent
conductivity, σ(E), on the thermopower, whereas the second
term in equation (38) represents the effect of the temperature
dependent band edge. Therefore, we can say that for normal
metals a positive sign of thermopower will be measured if
dEC/dT > 0 and if this effect overcompensates for the
influence of σ(E) represented by the first term in equation (38).
This conclusion holds exactly if z = 1. If z = 3/2, this fact
is to be considered as a tendency. It holds also for the general
case as long as the energy dependence of σ(E) can be written
as σ(E) ∝ Eξ , where ξ is a number.

As mentioned in section 4, it is not yet completely clear
whether z = 3/2 or z = 1. We believe that for metals
z = 3/2 is correct. However, the final answer depends on
the question of whether or not equation (44) or equation (3)
contains exclusively the scattering contribution (corresponding
to S0 introduced in section 3.1, equations (18)–(20)). This
question is a matter of future studies.

The results of section 2–4 can be applied, in principle,
also to crystalline metals: as a trend, a positive sign of
thermopower will be measured for crystalline metals as well
if the conduction band edge shifts to higher values with
increasing T and if this effect overcompensates for the
influence of σ(E). Thus, for the crystalline Cu, Ag, Au,
and Li the experimental thermopowers also have positive sign;

7
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at 0 ◦C they are +1.7, +1.4, +1.1, and +11.5 μV K−1,
respectively ([27], p 316). Even the signs for most of the
other liquid metals listed in the table 1 agree with those of the
corresponding crystalline metals [27].

A possible objection against this conclusion referring to
crystalline metals may be that the positive sign could also
be caused by the non-spherical Fermi surfaces realized in
the crystalline noble metals which have prominent necks in
the [111] directions touching the Brillouin zone boundaries.
However, this objection cannot explain the large positive
thermopower in Li which has a nearly spherical Fermi surface
([4], p 144; for a general discussion of the related problems
see [4], pp 191–196).

On the other hand, in the temperature ranges T < 19 K
and 130 K < T < 250 K, Sexp for Li depends roughly
linearly on T ([4], pp 171–173). This finding suggests that an
interpretation of its positive sign via the property ∂σ(E)/∂ E <

0, equation (3), may be rather likely, because α0 ∝ T ,
equation (1). However, recent calculations by Geertsma et al
[21], based on the diffraction model [11] together with the
pseudopotential concept (mentioned in section 1), provided a
negative thermopower for liquid Li which does not support
such an interpretation. An answer to this open question could
be obtained, perhaps, by an experimental determination of
the band edge shift with temperature, applying photoemission
measurements, which can nowadays resolve a shift in energy
as small as what is estimated to occur for Li (as well as for Cu,
Ag, Au, and Cs; see the column ‘dEC/dT ’ in table 1).

For transition metals, interband transfer of electrons (as
mentioned in section 3.1) can affect the carrier density n and
the Hall coefficient RH. Actually, a considerable temperature
change of RH has been measured for a series of amorphous
transition metal alloys (see [28], figure 27 therein). Until
now, this temperature dependence of RH has been interpreted
as being caused by electron–electron interaction effects ([28],
pp 316–317).

The results of section 3 can also be assigned to
semiconductors, i.e., equation (18) can be applied, on
principle, where S0 stands for the known thermopower
formulae for semiconductors due to scattering ([10], pp 133–
142). In these formulae, changes of the chemical potential
in reference to the band edges are included, already, but not
yet the contribution due to band edge shifts. These band
edge shifts provide an additional contribution to dμ/dT , in
correspondence with the discussion of sections 2.2 and 3.1.

In the formulae for homogeneous metals,
equations (38), (39), the band edge shifts occur, but not
the electrostatic potentials. This result corresponds to the
discussion in section 2.2. In contrast to that, for the two-
phase range of a composite (0 < υB < 1) both the band
edge shifts and the electrostatic potentials occur (via dμ/dT ,
equation (30)). In phase B , ϕA acts as an external electrostatic
field, while in phase A, ϕB acts as an external electrostatic field.
This is an important difference from homogeneous metals: the
electrostatic potential affects the thermopower of a composite,
but does not affect it in a homogeneous metal. This difference
is also expected between composites with semiconducting
phases and homogeneous semiconductors.

Equations (38)–(40) are not in contradiction to the fact
that the absolute thermopower for a superconductor disappears.
Because the specific electrical resistivity ρ is zero, scattering
of the electrons does not happen; therefore, the residual
difference in μ between the ends of the sample, �μ, disappears
completely, i.e., grad μ = 0 (in correspondence with the
considerations in section 2.2). Note that a change of μ (by
an increase of T ) is completely counterbalanced by the fact
that a transient current flows (without resistance) through the
sample, until the steady-state condition grad μ = 0 is reached,
irrespective of whether or not dEC/dT = 0. The resulting
concentration gradient of charges does not lead to a non-zero
thermopower, because in a thermopower measurement only
differences of the electrochemical potential between the two
ends of the sample are detected, which is zero due to the
complete counterbalance just mentioned.

6. Summary

The Seebeck coefficient can be described as a sum of a
scattering term, S0, and a thermodynamic term, �S. It is
shown that the classical thermopower formula, equation (4),
is incomplete, because it leads to contradictions if applied
to the phases of a composite. By the derivation of an
analytic expression for dμ/dT in a (metallic) composite
and by consideration of the two limiting cases where the
composite degenerates to homogeneous alloys, it is found that
the temperature dependence of the band edges leads to an
additional contribution to the Seebeck coefficient. This result
applies for semiconductors as well. For a liquid or amorphous
normal metal a positive sign of thermopower will be measured
if dEC/dT > 0 and if this effect overcompensates for the
influence of σ(E). This conclusion holds also for crystalline
metals as a trend. Applying experimental thermopower data,
band edge shifts are determined for a series of liquid normal
metals.

While the electrostatic potentials affect the thermopower
of a composite, for a homogeneous material the electrostatic
potential does not affect the thermopower.
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Appendix. The effect of the electrostatic potential

In the following the effect of the electrostatic potentials ϕi

on the dependence of S′(±), equation (23), versus υB will
be discussed for a-Cr1−xSix alloys. We shall show that
consideration of ∂ϕi/∂ni in equation (30) leads to a shifting of
the discontinuity in the direction of larger values of υB, where
the phase B is the phase with the deeper average potential in
the composite. This shifting is demonstrated in figure A.1. For
calculation of ∂ϕA/∂n the relation

|e|∂ϕA

∂n
= υA

υB

c

n
(45)
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Figure A.1. Effect of the electrostatic parameter c on the S′(−)
versus υB curve (bold lines) for a-Cr1−x Six at T = 300 K calculated
by using equations (23), (30) with equation (45). With increasing
value of c, the discontinuity shifts to larger υB. (For c = 0,
additionally S′(+) (fine line) is drawn.)

derived in [25] (section IVA therein) was applied, where c is
a parameter which is to be determined. For the calculations
the same physical parameters are applied as are specified
in [23] and [25] (sections 4 therein), where ∂ EC,A/∂T =
∂ EV,B/∂T = 0 was set, and for calculation of ∂ϕB/∂nB,

1

υB

∂ϕB

∂nB
= 1

υA

∂ϕA

∂n
(46)

was applied, i.e., the formula for the calculation of dμ/dT ,
equation (30), reduces to that of [25] (equation (61) in
connection with equation (39) therein). As can be seen in
figure A.1, with increasing value chosen for the electrostatic
parameter c, the discontinuity in S′(±) shifts to larger υB. For
c < 1.5 eV, equation (23) no longer has solutions for the
entire concentration range; for c = 0, equation (23) has no
solution for 0.27 < υB < 0.43 (corresponding to 0.39 < x <

0.50). Figure A.2 shows the curves of figure A.1, but drawn
versus x .

The value of c is determined by the condition that the
discontinuity in the S′(±) curves agrees with those of the
experimental data, Sexp, occurring at x = 0.49 (corresponding
to υB = 0.43). This agreement was found for c = 2.6 eV.

For all the curves in figures A.1 and A.2, the same values
for κne,i and xi are applied: xA = 0.25, xB = 1.00, κne,A =
6 mW cm−1 K−1, κne,B = 26 mW cm−1 K−1, in agreement
with the corresponding S(−) curve in figure 2 of [23] (the
fine line curve therein). (κne,i and xi are the non-electronic
contributions to κi and the Si concentration in atomic per
cent, respectively, in the phase i ). While the amount of the

Figure A.2. Same as figure A.1, but for S′(−) versus x . The
discontinuity in S′(−) occurs at the same x as for the experimental
data if c = 2.6 eV is set. The specification of the experimental data is
given in figure 1 of [23]. In the inset the Seebeck coefficients of the
phases i calculated by using equation (21) are drawn versus x .

discontinuity (the distance between the upper and lower kink)
depends on the choice of the κne,i , the concentration where this
discontinuity occurs is independent of the κne,i .
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